Applications Of The High Pressure Positive Displacement Pump

The industrial applications of pumps have greatly changed the way machines work. At the helm of this transformation is the high pressure positive displacement pump (abbreviated as the PD pumps). Ever since their discovery, they have constantly been applied in machinery both in the traditional and modern setting.

The rotary and reciprocating pumps constitute the two main classes of pumps. They are similar in that they both allow a constant rate of flow but different in a functional point of view. Rotary pumps require constant lubrication through the pumping process. Their suitability with highly viscous fluids is the corner stone of their operation. They however cannot transmit abrasive fluids like water and gas efficiently. Vaporized fluids can be pumped but for only limited periods of time. Reciprocating pumps on the other hand are more all rounded because they are better suited for both viscous and abrasive liquids.

The efficiency and rate of flow of pumps is hugely dependent on two physical properties, that is, the viscosity of fluids and the pressure. The preference of PD pumps stems from their ability to maintain a constant flow rate given the ever changing physical properties.

There have been numerous applications of this types of pumps. A major milestone that has been achieved is in the oil and petroleum trade. The centrifugal pump was abandoned since it could not move fluids with gas. The gas content constituted part of the crude oil along with water and sand residues. Specific designs however allowed the PD pumps to move significantly large quantities of gas. Even the most basic designs could transmit up to 50 percent gas quantities.

The overall cost of pumping was greatly reduced when the PD pumps were put into use. Of shore drilling firms could now rack more in profits due to this.

Its applications can also be extended to the chemical process industry. These include the pharmaceuticals, food and beverage production and biotechnology. A typical chemical process is usually accompanied by major fluctuations in the physical properties of the initial mixture such as viscosity. Since PD pumps maintain a constant flow rate despite these unpredictable changes, it is the most suitable for transmitting the fluid through the reaction chambers.

A similar application can be seen in paper milling industries. Paper mills are fueled by a mixture of fibers from the wood and liquid chemical. During the process the resulting mixture usually undergoes changes in density as it is burnt. Other problems such as clogging and erosion of passageways is also a common phenomena. Since the process of paper manufacturing is a highly regulated procedure, a constant flow of fuel is required. Using any other type of pumps despite these associated problems will not yield the required results. The reciprocating type pumps therefore offer the best solution for paper millers.

In summary, positive displacement pumps are the most efficient when rate of flow is a major requirement. One should properly understand all the physical properties of the fluid intended to be transmitted before settling on a choice of pumping mechanism.

Read more about The Importance Of High Pressure Positive Displacement Pump In The Industry.